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Abstract 
This report summarizes work on earthquake-triggered landslides supported by NEHRP grant no. 
G19AP00027, as a collaborative project between Indiana University and the USGS Geologic 
Hazards Science Center.  The support allowed us to extend our development of a statistical model 
for estimating the distribution and impact of earthquake-triggered landslides in near-real time. As a 
direct result of this collaboration, our global model has been adapted for use in the USGS Ground 
Failure product and incorporated into the USGS’s real-time reporting system. We use standardized 
estimates of ground shaking from the USGS ShakeMap Atlas 2.0 to develop an empirical landslide 
probability model by combining shaking estimates with broadly available landslide susceptibility 
proxies, including topographic slope, surface geology, high-resolution land cover data, and 
precipitation. Our current model is based on 36 earthquakes for which digitally mapped landslide 
inventories and well-constrained ShakeMaps are available. Using logistic regression, the database is 
used to build a predictive model of the probability of landslide occurrence anywhere in the world, 
within minutes of the earthquake’s occurrence. We also have developed a comprehensive dataset of 
the location and impact of earthquake induced landslides from 1772-2020. Using landslide fatality 
counts, exposure to predicted landslide probabilities and a 
proxy for vulnerability, we developed a model to provide 
order-of-magnitude estimates of the number of fatalities 
that could potentially occur due to earthquake-triggered 
landslides. Combined with near-real time ShakeMaps, these 
models can be used to make predictions of whether or 
not landslides are likely to occur—and if so, where—for 
earthquakes around the globe, along with their potential 
impact, as part of the USGS Ground Failure product. We 
also report on newly developed collaborations focusing 
on earthquake triggered landslide hazards in Costa Rica 
and the Central United States. 
 

Figure 1.  Example of the extensive landslides triggered by the 
Kaikoura earthquake.  Photo by Sam Shepherd of the Royal 
New Zealand Defence Force. 
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Background 
As a natural component of erosive processes, landslides present hazard in areas with large 

topographic relief and slope, and can result in significant loss of human life and damage to the built 
environment (Daniell et al., 2017; Marano et al., 2009). Marano et al. (2009) showed that 5% of fatalities 
related to earthquakes were caused by landsliding, and that they were the third largest contributor to 
fatalities, only after building collapse and tsunamis. In a recent major earthquake in Papua New 
Guinea, a majority of the significant impact of the earthquake was due to landslides. Earthquake-
induced landslides have also been shown to be a major cause of disruption to lifelines in mountain-
ous regions (Bird & Bommer, 2004), impeding emergency response efforts. Damage to transportation 
lifelines can result in emergency responders being unable to access to affected areas, causing delays 
of search and rescue efforts as well as delivery of aid. Producing timely estimates to assess the extent 
and distribution of hazard due to seismically induced landsliding in near real-time is thus an impor-
tant aim, as this information could be used in postseismic response efforts to identify populations 
and lifelines likely impacted by landsliding. Estimates of the overall extent of landslide hazard can 
also be helpful for evaluating response strategies immediately following the occurrence of an 
earthquake.  

 
Until recently there have been very few approaches that can provide real-time assessment of 

earthquake-induced landslides (EQIL). Our models (Nowicki et. al, 2014; Nowicki Jessee et al. 2018b) 
were among the first statistical models that could be readily applied globally for near real-time pre-
diction of EQIL. Currently there are four classes of published models that could be applied globally: 
physical mechanistic models based on the method of Newmark displacement (e.g., Jibson et al., 2000; 
Godt et al., 2008; Gallen et al., 2017), statistical models developed with logistic regression using 
landslide inventories (e.g., Nowicki et al., 2014; Parker et al., 2017), statistical models based on fuzzy 
logic (e.g., Kritikos et al., 2015; Robinson et al., 2018), and an empirical model that relates the total area 
and volume of landsliding to seismologic parameters of individual earthquakes (Marc et al., 2016).  
 

In this project we extend previous work on developing a globally applicable model for 
predicting location and human 
impact of landslides induced by 
earthquakes.  Our statistical model 
provides a powerful new tool to 
predict seismically induced land-
slides across the globe in near-real 
time. Our empirical landslide prob-
ability model combines shaking 
estimates (from the USGS Shake-
Map system; Worden & Wald, 2016) 
with landslide susceptibility 
proxies, such as topographic slope, 
surface geology, spatially variable 
ground wetness, high-resolution 
land cover data, and precipitation. 
We train the empirical model 
observations from a suite of 36 
currently available global data sets 
for earthquake-triggered landslides. 
Its major innovation is the incorp-

Figure 2. Example product card from the USGS earthquake monitoring system for the M7.1 
Namie, Japan earthquake. Note the Ground Failure Earthquake Product indicates 
significant landslide hazard (orange alert) for this event. 
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oration of high-quality, near real-time estimates of ground shaking, together with globally available 
environmental data, to allow forecasting of landslide probability within minutes of the occurrence of 
a major earthquake. The model may be used to make predictions of whether or not (and if so, 
where) landslides are likely to occur for earthquakes around the globe, whether the event has already 
occurred or could potentially occur in the future.  This approach also provides opportunities to plan 
for landslide occurrence in advance of damaging earthquakes, and to respond to these devastating 
events once they happen. 

One of the most important contributions of this project is its contribution to the recently released 
USGS Ground Failure Earthquake product (Allstadt et al., 2018b), which makes near real-time estimates 
of landslide estimates for emergency response, planning, and public information, as a new “card” on 
the USGS earthquake information website (earthquake.usgs.gov), as shown in Figure 2 for the M7.1 
Namie, Japan earthquake that occurred in February 2021.  The Ground Failure Earthquake Product 
estimates landslide distribution and population exposure to landsliding.  Our project extends the 
development of this model for higher-resolution landslide modeling. This will ultimately result in the 
development of new graphical tools to represent and assess hazard exposure to population and 
infrastructure (e.g., roadways, lifelines, critical facilities), comparable to a ShakeCast tool for ground 
failure.  

Statistical Modeling Approach 

The main objective of landslide hazard 
modeling is to predict areas prone to land-
slides either spatially or temporally (Brenning, 
2005); here we focus on short-term prediction 
of the spatial pattern of landslides triggered by 
an individual earthquake. Our methodology, 
summarized in Figure 3, uses a statistical 
approach, following those applied in many 
previous landslide studies, including Jibson 
(2007), Garcia-Rodriguez et al. (2008), Felicísimo et 
al. (2012), and Li et al. (2012). Landslide hazard 
assessments typically involve creation of a 
long-term landslide susceptibility map as their 
end product and are usually focused on a 
small region where data are available at a rela-
tively fine resolution.  Our approach takes this 
statistical method to a global scale, making use of high-
quality, near real-time ground shaking estimates from 
ShakeMap, along with globally available susceptibility proxies, to estimate landslide probability within 
minutes after a major earthquake.  
 

We apply logistic regression analysis (e.g., Peng et al., 2002) to a series of training events with well 
constrained ground shaking and landslide distribution data, which provide empirical constraints on 
the model. The performance of the regression model is assessed with both statistical goodness-of-fit 
metrics and a qualitative review of the model’s capability to capture the spatial extent of landslides 
for each training event, as well as for validation test events that are not used in the regression model. 
Combined with near real-time ShakeMaps, the model may be used to make generalized predictions of 
whether or not (and if so, where) landslides are likely to occur for earthquakes around the globe.  

Figure 3. Schematic showing model development.   
 



 
	

4	

We use logistic regression (e.g., Rennie, 2003) to represent a process involving a binary outcome (in 
this case, slide or no slide), which allows us to fit the observed outcomes to the logistic function using 
data representing multiple predictor variables. The logistic function transforms the odds of an 
outcome into a probability value, as shown in Equation 1. Following Brenning (2005) we conclude 
that logistic regression provides the most reliable statistical approach for modeling seismically 
induced landslides. 
     𝐿𝑜𝑔𝑖𝑡(𝑃) = ln , !

"#!
- = 	𝑎 + 𝑏𝑥" + 𝑐𝑥$ + 𝑑𝑥% +⋯   (1) 

 
The probability of an outcome can then be represented by Equation 2:  
 𝑃(𝑡) = "

"&'!"
 , (2)  

 
where    𝑡 = 	𝑎 + 𝑏𝑥" + 𝑐𝑥$ + 𝑑𝑥% +⋯ 
and 𝑥", 𝑥$, 𝑥%, … represent the explanatory variables; and a, b, c, and d are coefficients determined in 
the regression.  
 
    While landslide susceptibility maps are currently available for various regions, as well as some 
available globally (e.g., Nadim et al., 2006), none allow for real-time input into their model, as they 
represent a long-term susceptibility to landslides. Our goal is to incorporate the hazard estimate 
from seismic events by including the ShakeMap data for each earthquake (available in near real-time 
from the USGS), combined with both slope values and proxies for material strength, wetness, and 
soil strength, thus allowing the model to be applied in near real-time for future events.  
 
    Our modeling assesses quantitative relationships within the data, using logistic regression to 
establish a functional form between the predictor variables and the outcomes (Figure 3). Metrics of 
success to test the model performance include visual interpretation (spatial correlation), the Akaike 
Information Criterion (AIC; Wagenmakers & Farrell, 2004), the area under the receiver operating 
curve (AUROC; Marzban, 2004), graphical performance classifications, and qualitative assessment of 
the models in terms of their predictions in parameter space.  
 
    While the method of logistic regression has been widely used, its global application has been 
limited by a number of characteristics.  First, most of the applications in the literature are developed 
within local projects, e.g., within one country—and thus are seldom applicable outside that study 
area. Second, the input parameters representing the shaking hazard vary from project to project, 
thus making it difficult to compare results from similar landslide susceptibility studies.  Finally, in 
many cases no method is provided to test how well the model is performing. This project addresses 
these large gaps in the literature in order to present a globally applicable, short-term, probabilistic estimate of 
the likelihood of landslides associated with a particular event. 

Predictor Variables 

We examine a range of physical properties and hydrologic conditions of near-surface materials 
and the characteristics of ground shaking during an earthquake that may affect the location, size, and 
mobility of earthquake-triggered landslides. We rely on empirical studies that describe known 
impacts on the distribution of landsliding to choose globally available predictor variables that can 
represent the susceptibility of an area to landsliding—combined with triggering ground motion 
estimates from ShakeMap. Based on these guidelines, we initially include the following predictor 
variables in the regression analysis for further testing: (1) ground motions produced by the earth-
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quake, (2) topographic slope, (3) elevation, (4) lithology, (5) soil wetness, (6) precipitation, (7) land 
cover, and (8) earthquake magnitude. These variables were quantitatively compared with the spatial 
distribution of mapped landslides that occurred due to shaking produced in that particular event.  

Landslide Data.  The element most 
critical to our proposed work is a grow-
ing data set of observational landslide 
data from 36 earthquake-triggered land-
slide events. The current locations of 
sources are shown in Figure 5.  Multiple 
methods are used to map landslides; 
these include field-based mapping of 
observed landslide deposits and remote 
sensing techniques. These ‘training 
events’ have been selected based on the 
quality and availability of data for these 
events. Figure 4 shows a comparison of 
the predicted landslide probabilities and 
the mapped landslides caused by the 
1999 Chi-Chi, Taiwan earthquake. As an 
outgrowth of this project, we have 
collaborated with landslide researchers 
from USGS and University of Twente 
(Netherlands) to publish the landslide inventories from this global suite of events in an open-source 
global database, as described in Tanyas et al. (2017) and Schmitt et al. (2017), which will open the door 
to provide open access data for further studies within the landslide community.  

Ground motion. Many studies have shown that landslide patterns reflect properties of the 
triggering ground shaking (e.g., Verdin, 2017; Keefer, 2002; Meunier et al., 2007; Nowicki et al., 2014; 
Rodriguez et al., 1999). Here we test a number of estimates of ground motion parameters available 
from the USGS ShakeMap system (Worden & Wald, 2016) including peak ground acceleration (PGA), 
peak ground velocity (PGV), and Modified Mercalli Intensity (MMI). We note, however, that the 
ShakeMap estimates of ground motion amplitudes evolve in the hours and days following an 
earthquake as new source models and strong-motion and intensity data become available. As a result 
the resulting landslide probabilities change significantly, as shown by Allstadt et al. (2018a,b).  

Topographic Slope. Slope steepness exerts a strong control on slope stability (e.g., Budimir et al., 
2015).  We attempt to incorporate slopes computed from the highest resolution elevation data that 
are consistently available globally. We incorporate a new, globally available slope dataset at 3 arc 
second (~90 m) resolution, published in Verdin (2017) in this round of model development.  

Lithology. We use a newly available global lithological map (GLiM) dataset available for the 
entire globe (Hartmann & Moosdorf, 2012). This dataset provides the most detailed representation of 
lithology tested here by combining 92 regional lithological maps at the highest resolution available 
from across the globe. We use their 13 classes of lithology and also classify the lithologies into 
relative strengths based on the ranking system of Nadim et al. (2006). We recognize that soil cover is 
highly variable and plays a role in near-surface landsliding, which is not accurately reflected in the 
GLiM data. We therefore also test a soil thickness dataset at 250-meter resolution from the Soil 
Grids data, a soil depth dataset, and a soil taxonomy dataset. 

Figure 4. (a) ShakeMap output showing MMI (Modified Mercalli Intensity) for the September 
20, 1999 Chi-Chi, Taiwan earthquake (Garcia et al., 2012). (b) Spatial distribution of 
mapped landslides due to the earthquake, shown with black dots (Liao and Lee, 2000) overtop 
of predicted landslide probabilities from the Jessee et al. (2018) landslide model.  
 

B.  A.  
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Material Wetness. In order to incorporate variability in surface wetness into the landslide model 
we use the compound topographic index (CTI) as a proxy for potential soil wetness (Moore et al., 
1991). We also test a 3 arc-second resolution dataset of CTI published in Verdin (2017). CTI 
combines the slope value (α) and the contributing basin area (A) to estimate the spatial variability of 
wetness within a landscape, 

                              𝐶𝑇𝐼 = ln	 , (
)*+(-)

- .    (3) 

High CTI values thus result from lower slope values with larger drainage areas, while low CTI values 
result from higher slope values with smaller drainage areas. We recognize that this value does not 
consider soil moisture directly but is dependent on the potential influence of topography on soil 
wetness (i.e., drainage area and proximity to a stream).  

Land Cover. Vegetation type and coverage can affect the composite strength of the soil-
vegetation root matrix, which affects the stability of a slope. The overall effect on strength can be 
variable and highly dependent on localized properties. We therefore use land cover data in our 
model as a proxy for vegetation cover by including the GlobCover 2009 data, available at 300 m 
resolution, based on satellite imagery from multiple sources during 2009 (Arino et al., 2012) and 
separated into 20 classes. We also tested a percent green vegetation cover dataset derived from 
MODIS data.  
 
 
Project Results 

Since this collaborative project was initiated in 2012, we have made considerable progress in 
developing a workable model for near real-time landslide prediction. Our results, presented by 
Nowicki et al. (2014) and Nowicki Jessee et al. (2018; 2019), used a number of well-documented case 
histories in the landslide literature to build the database of landslide observations that are used as a 
training set for our predictive model.  These events were selected based on the high quality and 
availability of data. As part of this effort, we have helped to develop an open repository of landslide 
inventories described in Tanyas et al. (2017) and Schmitt et al. (2017). Our current landslide model 
includes 36 events from various regions, as shown in Figure 5 (from Nowicki Jessee et al., 2020b).  
Data for additional earthquakes will be incorporated as new, high-quality landslide data become 
available. 

Figure 5. Map of events 
incorporated into training 
the global database.  
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Modeling with increased resolution. Until recently, our modeling was limited to 7.5 arc-second 
(~250 meter) resolution.  Because the majority of landslides—and their associated impacts—are 
controlled by topographic irregularities at scales significantly smaller than this, we increased the spa-
tial resolution of our model through application of a newly available higher resolution topography 
dataset (Verdin, 2017), which provides slope data at 3 arc-second (~90m) resolution south of 60 
degrees N and 7.5 arc second (~250m) resolution north of 60 degrees N. Results show this may 
allow us to more accurately model landslide occurrence. A comparison between the slope data 
developed at 30 arc-second, 7.5 arc-second, and 3 arc-second resolutions is shown in Figure 6. Note 
the higher variability and detail present in the 3 arc-second data.  

 
 
 
 

 

Improved/new input parameters. We also tested newly available, updated global data sets for 
incorporation into the landslide model. These include the datasets given in Table 1. A comparison 
between previously tested data and newly tested input parameters chosen to be used in versions of 
the model moving forward is shown in Figure 7.  
 
Table 1.  Newly tested landslide susceptibility proxies available globally. 

Global Data Layer Description Source Resolution 

Maximum Temperature of Warmest 
Month (BIO5) 

Fick and Hijmans, 2017. Worldclim 2: New 1-km spatial resolution 
climate surfaces for global land areas. International Journal of 
Climatology. https://www.worldclim.org/data/bioclim.html 

1km 

Mean Annual Precipitation (BIO12) Fick and Hijmans, 2017.  1km 

Precipitation Seasonality (coefficient 
of variation; BIO15) 

Fick and Hijmans, 2017.  1km 

MODIS % Green Vegetation Cover Broxton et al. 2014b, A MODIS-Based 1 km Maximum Green 
Vegetation Fraction Dataset, J. Appl. Meteorol. Clim. 

1km 

Soil Thickness SoilGrids250m, Absolute depth to bedrock (in cm), 
http://soilgrids.org BDTICM_M_250m_ll.tif 

250m 

Soil Taxonomy SoilGrids250m, Predicted WRB 2006 subgroup classes (as integers), 
http://soilgrids.org TAXNWRB_250m_ll.tif 

250m 

Average Sediment Depth Pelletier et al. 2016. Global 1-km Gridded Thickness of Soil, Regolith, 
and Sedimentary Deposit Layers 

1km 

3 arc-second Slope Verdin, K.L., 2017, Hydrologic Derivatives for Modeling and 
Applications (HDMA) database: U.S. Geological Survey data release, 
https://doi.org/10.5066/F7S180ZP. 

~90m south of 60°N and ~250 
meter resolution north of 60°N 

3 arc-second Compound 
Topographic Index (CTI) 

Verdin, K.L., 2017, Hydrologic Derivatives for Modeling and 
Applications (HDMA) database: U.S. Geological Survey data release, 
https://doi.org/10.5066/F7S180ZP. 

~90m south of 60°N and ~250 
meter resolution north of 60°N 

Vs30 USGS (Worden & Wald, 2016) 1km 

Figure 6. Comparison of slope data 
calculated for the 2008 Wenchuan earth-
quake region at 30 arc-second resolution 
(left), 7.5 arc-second resolution (middle) 
and at 3 arc-second resolution (right). 
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Model Testing and Selection 

We iterate over numerous combinations of predictor variables to find the best-fit model of all 
the combinations that can be used in the regression. We compare the AIC and AUROC values as a 
metric of model performance; due to its prominence in the literature and ability to differentiate 
model combinations from one another, we choose the AUROC as our principal measure of model 
fit, where the highest value indicates the best fit of the model to the data. However, we see that high 
AUROC values also result in low AIC values for a given model configuration, which represents the 
best model fit, and therefore we can use the two measures in conjunction to determine a best-fit 
model.  
 

Preliminary testing used proxies for shaking, slope, lithology, wetness, mean monthly precipita-
tion, land cover, and magnitude, yielding a best-fit combination that results in the lowest AIC value 
of all variable combinations. At a finer scale, we then introduce various representations of each 
variable (where available), while holding all other model parameters fixed. Results then show which 
variable portrayal results in a better fitting model. Model testing shows incorporating 90m slope data 
produces a model that fits about as well as the 250m slope data we are currently using, but not 
better. These test results also show that models produced with other slope stability measures such as 
soil thickness and percent green vegetation cover fit the landslide data nearly equally as well as more 
complex datasets of lithology and landcover. 

7.5c (~250m) 

3c (~90m) 

Global Lithology 

Soil Thickness 

Land Cover Type 

% Green Vegetation 
Cover 

Figure 7. Comparison of newly tested landslide susceptibility proxies and previously tested data in the region surrounding the 
Kaikoura earthquake in New Zealand (2016). Left column shows slope data calculated at 7.5 arc-second resolution (top), and 3 
arc-second resolution (bottom). Middle column shows GlIM lithology (top) and soil thickness (bottom). Right column shows land 
cover type (top) and percent green vegetation cover (bottom).  
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We present three different model formulas to allow downstream users of the model to choose 
which model formula will work best for their application of the model. Using this method, we find 
three best-fit models, starting with a functional model form shown in Equations 4 and 5 (from 
Nowicki Jessee et al. 2018): 

z = a + b*ln(PGV) + c*(Median slope) + d*(Lithology) + e*(Land Cover) + f*(PGV*Slope) + g*(CTI),  (4) 

where a, b, c, d, e, f, and g are coefficients solved for in the regression, and  

                                                                         𝑃(𝑧) = "
"&'!#

 ,                         (5)                                      
where P = predicted probability of landslide occurrence.  

 
The models and their associated goodness-of-fit estimates are summarized in Table 2.  Model 13 

adds an additional variable of soil thickness data. Model 14 uses the higher resolution 3 arc-second 
slope and CTI data and adds an additional variable of soil thickness data. In Model 17 we replace the 
nominal variables previously used in the model with numerical values. Soil thickness data replaces 
lithology categories, and percent green vegetation cover data replaces land cover categories. The goal 
of this final model is to eliminate some of the problems that have been found when using these two 
nominal datasets in near-real time as part of the USGS Ground Failure Tool.  
 

Table 2.  Comparison of three favored models for landslide occurrence. From Nowicki Jessee et al. (2020b). 

Model  

Model # 13 
(high-res topo + 
soil thickness) 

Model # 14 
(250m topo + 
soil thickness) 

Model # 17 
(250m topo + numerical 

geology/land cover) 

AUC Value 0.917 0.923 0.901 

AIC Value 448652 436815 497789 
 
 

The 36 landslide data sets described above were used to calibrate these models, and results were 
presented by Nowicki Jessee et al. (2020b). The coefficients solved for from this ‘global’ dataset are 
then termed the ‘global landslide models,’ and can be applied to each event in a forward sense in 
order to determine how the model performs in each location. Spatial predictions from these global 
models as applied to the M7.7 Chi-Chi, Taiwan earthquake are shown in Figure 8, where each of the 
plots shows the spatial pattern of the model output predictions in comparison to mapped landslides 
triggered by the earthquake. All three newly developed models provide a good fit between predicted 
landslide probabilities and the landslide inventory for the Chi-Chi, Taiwan case study. By zooming in 
to smaller areas of the map (Figure 9) we can observe differences in the results out of the three 
models as compared to the current published version of the model. These visual results suggest that 
Model 13 (3 arc-second slope and CTI data + soil thickness) reduces over-prediction of landslide 
probability and can recreate detailed features of landslide occurrence better than the other models.   
 

These results yield three new preliminary models for global application to predict landslides 
associated with future large earthquakes. To apply these models for rapid response and loss 
estimates (post-earthquake occurrence), the inputs for the forward model are simply the location of 
the earthquake, and the spatial distribution of peak ground velocity, which is computed via the 
ShakeMap program.  
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Figure 9. Landslide probability estimates out of four versions of the landslide model for the Mw7.7 Chi-Chi, Taiwan earthquake that occurred on 
9/20/99. Left panels show an inset of Figure 5, while the right panels show a further inset (as indicated by the area within the pink box on the left 
panels). Black dots indicate landslides used for training the model (Liao and Lee, 2000).  
 

 
 
 
Figure 8. Predicted landslide 
probabilities for the area 
surrounding the Mw7.7 September 
20, 1999 Chi-Chi, Taiwan 
earthquake out of Model 13 (3 
arc-second resolution + soil 
thickness added; left), Model 14 
(7.5 arc-second resolution + soil 
thickness added; middle), and 
Model 17 (7.5 arc-second 
resolution with numerical geology 
and landcover data; right). Black 
dots indicate landslides used for 
training the model (Liao and Lee, 
2000).  
 
 
 

Current Model (2018) 

Model 14 (250m): 
Soil Thickness Added 

Model 13 (90m):  
High-res 

+ Soil Thickness 

Model 17 (250m): 
Numerical Geology 
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Current Model (2018) 

Model 14 (250m): 
Soil Thickness Added 

Model 13 (90m):  
High-res 

+ Soil Thickness 

Model 17 (250m): 
Numerical Geology 

& Landcover 
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Analysis of EQIL impacts – fatality estimation 
 

Currently, there are many datasets describing landslides caused by individual earthquakes, and 
global inventories of earthquake-induced landslides (EQIL). However, until recently, there were no 
datasets that provide a comprehensive description of the impacts of earthquake-induced landslide 
events. In our ScienceBase data release (Seal et al., 2020), we present an up-to-date, comprehensive 
global database containing all literature-documented earthquake-induced landslide events for the 
244-year period from 1772 through May 2020. The database represents an update of the catalog 
developed by Nowicki Jessee et al. (2020a), which summarized events through 2016. The revised 
catalog contains 264 historical earthquakes, 153 of which include documented landslide fatality 
counts. The global distribution of coseismic landslide fatalities is shown in Figure 10. Our dataset 
includes information on earthquake size, depth, earthquake fault type, date and time, location, the 
availability of a USGS ShakeMap, availability of a landslide inventory, information about landslide 
occurrence (number of landslides, area or volume of landsliding, landslide magnitude), and 
earthquake/landslide impact (total fatalities, landslide fatalities, and number of injuries due to the 
effects of the earthquake). Users may download both the database of all known EQIL events, and all 
events for which landslide fatality counts exist, on the ScienceBase website.  

 

 
Figure 10: Global map of all documented earthquake-induced landslide events occurring between 1772 - May 2020 that contain recorded 
landslide fatality counts. Events are scaled by the quantity of landslide fatalities per event, represented by varying circle sizes on the map. 
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In order to develop a quantitative model of impact due to earthquake-induced landslides, we 
used this global dataset to develop a predictive model of landslide fatalities trained using 91 of these 
earthquakes with landslide-related fatality observations for which ShakeMaps are available. Our best-
fit model is a multiple linear regression between probabilistic landslide exposure (PLEI), the United 
Nations Human Development Index (UNHDI; as a proxy for vulnerability), and fatality count from past 
earthquake-induced landslide events. There is a positive correlation between log10(PLEI) and log10 

(observed fatalities) (r=.507, p<.001), as well as a high negative correlation between UNHDI and 
log10(observed fatalities) (r= -.491, p<.001). The regression yields the model shown in Equation 6: 

 
𝑙𝑜𝑔"/(𝑃01213425	) = 0.639 + 0.417 ∗ 𝑙𝑜𝑔"/(𝑃𝐿𝐸𝐼) − 2.939 ∗ (𝑈𝑁𝐻𝐷𝐼)	                       (6) 

 
We apply this model to all of the training data; the results are shown in Figure 11. We find that 

the fatality predictions generally fit the data well, with significant exceptions for three anomalously 
large fatality observations (the Peru earthquake of 1970, the Kashmir, Pakistan earthquake of 2005, 
and the Wenchuan, China earthquake of 2008), as shown by 
the difference between the observed and predicted landslide 
fatality counts for each of the earthquakes in Figure 11. In 
general, we observe an inverse relation between the fatality 
rate per exposure to landsliding and the human development 
index values, suggesting higher vulnerability among coun-
tries with lower UNHDI values. We observe a significant 
positive correlation between predicted and observed fatali-
ties, but with high variability in fatality rates for similar 
exposure levels.   

These estimates of potential landslide fatalities can also 
be used together with scenario earthquakes described here 
to understand the potential for landsliding in an area prior to 
the occurrence of a large earthquake. Together, these 
products provide a basis for a more comprehensive under-
standing of potential landslide impacts, whether estimated 
prior to or after a large earthquake occurs. The results can 
be used by vulnerable communities to improve land-use 
planning, structural design, and emergency response in land-
slide-prone areas.  

 
Incorporation into USGS Ground Failure System 

The current version of our published landslide model is being used by the USGS Ground Failure 
Earthquake Product to estimate landslide hazard in near-real time after large earthquakes around the 
world, for which ShakeMaps are produced. These estimates are also being used for estimating  
population exposure to landslide estimates. This tool has undergone the final beta testing phase and 
is now available publicly (Allstadt et al., 2018b).  Figure 12 shows an example of the ground failure 
product as applied to the M7.1 Namie, Japan earthquake of February 2021. This event was shown to 
have significant landslide hazard as well as significant population exposure, which is depicted on the 
hazard estimates from the Ground Failure Earthquake Product.   
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Figure 11. Multiple regression on log10(landslide fatalities) 
dependent on log10(PLEI) and UNHDI. Each line represents 
the model prediction calculated using the mean value of the four 
classes of UNHDI defined by the United Nations Development 
Programme (UNDP, 2016).  
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Contribution of Fatality Estimation in the 
Ground Failure product  

We plan to continue our current collabora-
tion with the USGS to continue developing 
and testing the landslide models for further 
development with the USGS Ground Failure 
Earthquake Product. In particular we will work 
together with USGS colleagues to tie alert 
levels to estimated fatality bounds out of the 
fatality model (after further development de-
scribed in the previous section), to produce a 
product similar to the PAGER outcome for 
earthquake fatalities. A preliminary alert level 
designation is shown in Figure 13.  
 
 
 
 
Deterministic landslide predictions with scenario earthquakes 

The USGS ShakeMap system permits, in addition to rapid prediction of strong ground motion in 
the aftermath of earthquakes, the analysis of ‘artificial’ earthquakes, as a contribution to deterministic 
earthquake hazard assessment (e.g., Hamburger et al., 2011).  The same approach can provide a pow-
erful tool to assess spatial patterns of future landslide hazards in areas of known landslide vulnerabil-
ity.  The USGS has developed an archive of ‘scenario earthquakes’ that allow forecasting of expected 
ground motion and potential impacts of specific hypothetical large earthquakes that can be used for 
planning emergency response and hazard mitigation. Given that the landslide regression model is 
framed by ShakeMap estimates of ground motion, the system could be readily adapted to provide 
estimates of potential landslide vulnerability, as shown in Figure 14 for scenario earthquakes in 
Northern California, the Pacific Northwest, and the central U.S.  By utilizing the global landslide 

Figure 12. An example of the USGS Ground Failure Earthquake Product output for the Namie, Japan earthquake that occurred on 02/13/21. 
Note the two separate alert levels for landslide hazard and landslide exposure (left), as well as the map of estimated landslide distribution (right). These 
products are available in near-real time for every significant earthquake (Mw6.0 and larger) around the world for which a ShakeMap is produced. 

Figure 13. Observed earthquakes (dots) plotted in terms of exposure and fatality 
count. Multiple regression model is plotted on top. Shading indicates an initial 
proposed alert level designation.  
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model to predict where landslides are to occur due to a particular scenario earthquake, we can 
identify areas that are more and less prone to earthquake-triggered landslides.  

Estimates of landslide impacts, in collaboration with use of these scenario earthquakes, will 
provide a powerful tool for communities to understand and respond to the risk associated with 
earthquake-induced landslides. Estimates of potential landslide fatalities can also be used together 
with scenario earthquakes described here to understand, and ideally, prepare for, the potential 
impact of landsliding in an area prior to the occurrence of a large earthquake. These estimates can be 
used by vulnerable communities to improve land-use planning, structural design, and emergency 
response in landslide-prone areas. By understanding their proximity to this type of hazard before the 
occurrence of a destructive earthquake, our work may ultimately contribute to improved community 
resilience to both natural and human-induced disasters. We have applied this to different case study 
areas in Costa Rica and the Central U.S. to investigate the impact of source location, depth, source 
faulting, and magnitude on landslide occurrence to provide a more robust understanding of potential 
for landsliding.  

 

 
Application of Landslide Model to Costa Rica 

Costa Rica offers a rich variety of seismotectonic source areas, a long record of earthquake-
induced landslides (EQIL) dating back to 1772, and a history of devastating landslide impacts, 
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Figure 14. Top: ShakeMaps showing the spatial distribution of ground shaking for three scenario earthquakes. Bottom: Landslide probability 
maps. a) M7.0 Hayward fault scenario; b) M9.3 Cascadia megathrust scenario; c) M7.7 New Madrid scenario (red box indicates the map 
area shown by the probability map).  
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allowing us to test the applicability of our 
global near-real-time landslide model in a 
regional context. Through a new collaboration 
with the University of Costa Rica and Rutgers 
University, we gained access to multiple 
mapped landslide inventories that enabled us 
to validate our global landslide model results 
with local observational data, including 
inventories of landslides triggered by the 2009 
Cinchona Mw 6.1 (Ruiz et al., 2019) and 
Limon Mw 7.6 (Hernandez et al., 1992) 
earthquakes, as shown in Figure 15. 

Following the Cinchona earthquake, a 
total of 4,846 coseismic landslides were 
mapped over an area of 519 km² using a 
combination of airborne light detection and 
ranging (LiDAR), orthophoto data, and field 
observations. The earthquake resulted from a 
72 km² rupture of the strike-slip Ángel fault 
on the eastern flank of Poás Volcano, an 
active volcano located within the Central 
Volcanic Range of Costa Rica, approximately 
40 km northwest of the capital city San José, and 
was responsible for 30 fatalities directly attributed 
to landsliding (Ruiz et al., 2019). We observe the 
predicted landslide probability distribution to 
match observed landslide occurrence well in the 
areas adjacent to the epicenter (Figure 16).  Nearly 
all mapped landslides are found in areas of high 
predicted landslide probability, above ~0.3 
probability, excluding a small area directly west of 
the epicenter where rough volcanic topography 
inhibited aerial landslide observations. We note a 
few small areas of predicted high probability (e.g., 
red patches west of -84.7° W) where landslides 
were not observed. However, few other areas of 
high landslide probability were landslide-free, and 
the majority of observed landslides were in 
relatively high-probability zones. 

Deterministic Prediction of Landslides and 
Impacts using Scenario Earthquakes 

In order to fully encompass the full range of 
ground shaking and EQIL impacts possible for 
Costa Rica, we use the U.S. Geological Survey 
ShakeMap software (Worden and Wald, 2016) to 
compute spatial estimates of ground shaking for 

Figure 16: Comparison of predicted landslide probabilities for the 2009 
Cinchona Mw 6.1 with observed mapped landslide inventories (Ruiz et al., 
2019). Observed landslide polygons are drawn in red, the earthquake epi-
center is denoted as a yellow star, and an area where aerial landslide mapping 
was inhibited by cloud cover is outlined in blue, to the west of the epicenter. 
 

Figure 25: A.) Population distribution for the Central American Volcanic arc 
(CIESIN, 2005). B.) Tectonic and digital elevation map of Costa Rica, including 
each scenario earthquake location investigated in this study, along with the locations 
of major faults, population centers, and volcanoes.  
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both observed and anticipated future scenario earthquake events. Scenario earthquakes are a 
powerful approach to deterministic seismic modeling as they allow for in-depth hazard assessment 
in areas of interest with limited records of historical seismicity or lacking in high-quality data. We 
compute suites of scenario earthquakes at a range of plausible locations, magnitudes, and depths in 
four distinct tectonic environments in Costa Rica, as shown in Figure 15.   

These include subduction megathrust events along the Cocos-Caribbean plate boundary beneath 
(1) the northern Nicoya peninsula and (2) the southern Osa peninsula, (3) intraplate events beneath 
the Central Volcanic Range (CVR), and (4) back-arc thrust events on the eastern Caribbean coast of 
Costa Rica. In the CVR of Costa Rica, where numerous densely populated cities are located, we 
compute a suite of scenario earthquakes along the Agua Caliente Fault, directly south of San Jose at 
the epicenter of the devastating 1910 Cartago Ms 6.4 earthquake (Alonso-Henar et al., 2013). Example 
ground shaking and landslide probability maps for a scenario M 6.1 earthquake at 5 km depth on the 
Agua Caliente fault are provided in Figure 17, and the relative influence of magnitude and depth on 
the predicted landslide probability distribution is detailed in Figure 18. We observe increasing 
magnitude to raise the maximum probability and total sum areal coverage, while increasing depth 
decreases maximum probability while increasing sum areal coverage.  

Scenario Impacts 

To assess potential impacts to population for each scenario, we use high-resolution Landscan 
population data (Bright et al., 2014) alongside predicted landslide probability to compute the 
probabilistic landslide exposure index (PLEI) detailed in Nowicki Jessee et al. (2020a) using Eq. (1), 
where Po is the population count per grid cell and PL is the landslide probability per grid cell. 

PLEI = Po x PL                                        (1) 

PLEI is computed for all scenario earthquakes in each tectonic environment of Costa Rica and 
compared to magnitude, depth, and sum areal coverage. We find unsurprisingly that the highest 
potential for landslide exposure exists in the Central Volcanic Range, due to the combination of 
frequent earthquake activity, rugged topography, and high population density. Additionally, due to   

Figure 17: ShakeMap estimated ground shaking (left) and predicted GroundFailure landslide probability (right) maps 
for a M 6.1 scenario on the Agua Caliente Fault of Costa Rica at 6 km depth.   
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the potential for a large M 7.0 earthquake beneath the northern (Nicoya) and southern (Osa) 
portions of the Cocos-Caribbean subduction zone and related back-arc thrust events on the eastern 
Caribbean coast, we find that significant amounts of landslide hazard throughout the country may 
result from these events as well, increasing as events move inland towards central Costa Rica.  

Application to the Central United States 

Moderate-sized crustal earthquakes originating close to populated areas can have grave impacts 
on the built environment in the mid-continental United States. The most seismically active zone in 
the central US is the New Madrid seismic zone, where three large (M > 7) earthquakes occurred in 
the winter of 1811-1812 (Johnston & Schweig, 1996; Bakun & Hopper, 2004), associated with continued 
activity (Street et al., 1986). Additional zones of seismicity include the Wabash Valley seismic zone, 
along the southern Illinois and Indiana border and the Anna seismic zone, located along the north-
ern Ohio and Indiana border (Braile et al., 1982, 1997; Bear et al., 1997; Blakely & Varma, 1976). There 
have been numerous moderate-sized earthquakes in the Wabash Valley seismic zone, including the 
1968 M5.5 Carbondale, Illinois earthquake and the April 2008 M5.2 Mt. Carmel, Illinois earthquake. 
There is growing evidence of prehistoric earthquakes in both the New Madrid and Wabash Valley 
seismic zones (Tuttle et al., 2002; Obermeier et al., 1992). The Anna seismic zone produces continued 
moderate-sized earthquakes, including two ~M5 earthquakes in 1937 (Schwartz & Christensen, 1988). 
While large earthquakes have been documented in this intraplate area in the historic and paleo-
seismic record, they occur too infrequently to provide reliable observations of earthquake-related 
impacts. 

As a contribution to Indiana’s 2019 Multi-Hazard Mitigation Plan report (Indiana Department of 
Homeland Security, 2019), we applied a deterministic seismic hazard approach to illustrate the impacts 
of a series of specific possible future events that might affect residents in the central United States, 

Figure 18: Distribution of predicted landslide probability for a suite of scenario earthquakes on the Agua Caliente 
Fault, demonstrating the impact of magnitude and depth on the spatial distribution of landslide probabilities.   
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focusing on the state of Indiana. 
Deterministic case studies are by definition arbitrary scenarios representing individual cases of a 
virtually infinite set of possible combinations of earthquake location, magnitude, source type, depth, 
and wave propagation characteristics that might influence the impact of earthquakes. We examined 
five deterministic scenarios (Figure 19) that could affect residents of the central United States; a 
M7.6 New Madrid event in southeastern Missouri; a M7.3 Wabash Valley event in southern Illinois; 
a M6.2 Anna, OH event in west-central Ohio; a M6.2 Darmstadt, IN event near Evansville; and a 
M5.8 Central Indiana event near Indianapolis. The locations and magnitudes were based on known 
fault locations and credible interpretations of the earthquake history in the region.  

We used a combination of the US 
Geological Survey (USGS) ShakeMap and 
Federal Emergency Management Agency 
(FEMA) Hazus-MH software packages to 
assess earthquake-triggered ground-shaking 
and their effects on the built environment, 
respectively (USGS, 2017; FEMA, 2019). For 
each scenario we used ShakeMap to deter-
mine the spatial distribution of ground 
shaking and intensity, as shown for the M7.3 
Wabash Valley scenario (Figure 20a). Shake-
Map uses the location, magnitude, and source 
model for each event, together with geo-
graphically specific ground motion models to 

Figure 19. Locations and estimated shaking 
distribution for five scenario earthquakdes used 
in this study. Center map shows historical 
earthquakes as blue dots. The stars represent 
the approximate locations of the five scenario 
epicenters. Intensity maps for the five scenarios 
encircle the center map. Red is high intensity 
and blue is low intensity. Fault rupture is 
shown as a solid black line and the epicenter is 
marked with a black star. 
 

Figure 20. Four maps for the M7.3 Wabash Valley scenario. (a) 
Shaking intensity as calculated by Shakemap. (b) HAZUS result 
showing monetary cost of building damage caused by scenario event. (c) 
Potential liquefaction occurrence as determined by the USGS Ground 
failure tool. (d) Potential landslide occurrence as determined by the 
USGS Ground failure tool. 
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create maps of ground motion and shaking intensity for real and scenario earthquakes. The ground 
shaking estimates were then used as input into Hazus-MH and the spatial distribution of statewide 
and regional building damage is mapped (Figure 20b). Hazus-MH is a very complex tool that can 
both estimate the hazard and the impact on humans and infrastructure, in principle including human 
casualties, economic damage, infrastructure impacts and some secondary effects. The ShakeMap 
output files were also used as inputs to our ground failure estimation tool (Nowicki Jessee et al., 2018) 
together with the Zhu et al. (2017) liquefaction model to examine the spatial distribution of antici-
pated earthquake-induced landslide and liquefaction probabilities (Figure 20c,d). The modeled 
landslide probabilities suggest extensive zones of moderate landslide hazard, associated with zones 
of higher relief in southern Illinois, central Indiana, and western Kentucky. The widespread zones of 
predicted liquefaction are largely controlled by proximity to unconsolidated river sediments along 
the Wabash and Ohio rivers, and their tributaries.  This could have significant impacts on the urban 
areas of Evansville and Vincennes, Indiana. 

Our results indicate that Indiana’s built environment is significantly vulnerable to both large 
regional events and moderate-sized urban earthquakes, which could lead to hundreds of casualties 
and tens of billions of dollars in economic losses. For example, a moderate-sized earthquake located 
near a population center like Indianapolis or Evansville could result in economic losses greater than 
or equal to those due to a larger New Madrid or Wabash Valley seismic zone earthquake for those 
cities and the state of Indiana (Table 3). Deterministic analyses of these moderate-sized earthquakes 
can contribute to seismic risk assessment for areas of the central U.S. affected by rare, intraplate 
events. Lastly, to gain better understanding on which parameters have the greatest influence on 
impacts, we conducted a sensitivity analysis for earthquakes near Indianapolis and Evansville, where 
we reviewed losses due to differences in magnitude, depth, strike, and dip. We found that magnitude 
and depth have first-order influence on losses and the orientation of the causative fault in relation to 
populated areas can increase economic losses for an event of the same magnitude by 13-32%. 
 
Table 3: Total economic losses for the five deterministic scenarios calculated for five regions. 

Loss  
Calculation Area 

M7.6  
New Madrid 

Scenario 

M7.3  
Wabash Valley 

Scenario 

M6.2 
Darmstadt, IN 

Scenario 

M5.8 
Indianapolis, IN 

Scenario 

M6.2   
Anna, OH 
Scenario 

>=10% g PGA region $37.25 billion $21.21 billion $6.85 billion $7.21 billion $4.44 billion 
State of Indiana $839 million $8.17 billion $5.97 billion $7.21 billion $133 million 
Evansville, IN $256 million $1.21 billion $4.11 billion $0 $0 
Indianapolis, IN $50 million $421 million $590,000 $7.15 billion $11.7 million 
Fort Wayne, IN $150,000 $3.43 million $0 $50,000 $133 million 

 

This material is based upon work supported by the U.S. Geological Survey under Grant 
No. G19AP00027.  The views and conclusions contained in this document are those of the authors 
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Geological Survey. 
  



 
	

20	

References 
Allstadt, K. E., Jibson, R. W., Thompson, E. M., Massey, C. I., Wald, D. J., Godt, J. W., & Rengers, F. K. 

(2018). Improving Near-Real-Time Coseismic Landslide Models: Lessons Learned from the 2016 
Kaikoura, New Zealand, Earthquake. Bulletin of the Seismological Society of America. 
https://doi.org/10.1785/0120170297  

Allstadt, K. E., Thompson, E. M., Hearne, M., Wald, D. J., Nowicki Jessee, M. A., Biegel, K. M., & 
Hamburger, M. W. (2018). Near-Real-Time Ground Failure Estimates: A New USGS Real-Time 
Earthquake Product. In ShakeMap-Related Research, Development, Operations and Applications. Miami, FL. 

Alonso - Henar, J., Montero, W., Martínez - Díaz, JJ, Álvarez - Gómez, JA, Insua - Arévalo, JM, & Rojas, W.  
(2013). The Aguacaliente Fault, source of the Cartago 1910 destructive earthquake (Costa Rica). Terra 
Nova , 25 (5), 368-373. 

Arino, O., Perez, R., Julio, J., Kalogirou, V., Bontemps, S., Defourny, P., & Van Bogaert, E. (2012). Global 
Land Cover Map for 2009 (GlobCover 2009). https://doi.org/European Space Agency (ESA) & 
Université catholique de Louvain (UCL), doi:10.1594/PANGAEA.787668 

Bakun, W. H., & Hopper, M. G. (2004). Magnitudes and locations of the 1811-1812 New Madrid, Missouri, 
and the 1886 Charleston, South Carolina, earthquakes. Bulletin of the Seismological Society of America, 
94(1), 64-75. 

Bear, G.W., Rupp, J. A. and Rudman, A. J. (1997).  Seismic interpretation of the deep structure of the 
Wabash Valley Fault System, Seism. Res. Let. 68, 624-640.  

Bird, J. F., & Bommer, J. J. (2004). Earthquake losses due to ground failure. Engineering Geology, 75(2), 147– 
179. 

Blakely, R.F. and Varma, M. M. (1976).  The seismicity of Indiana described by return periods of earthquake 
intensities, Indiana Geological Survey Occasional Paper 16, 13 pp. 

Braile, L. W., Hinze, W. J., Sexton, J. L., Keller, R. G., and Lidiak, E. G. (1982). The northeastern extension 
of the New Madrid seismic zone. U.S. Geol. Surv. Prof. Paper 1236, 175-184. 

Braile, L. W., Hinze, W. J., and Keller, G. R. (1997).  New Madrid seismicity, gravity anomalies, and 
interpreted ancient rift structures, Seism. Res. Let. 68, 599-610. 

Brenning, A. (2005). Spatial prediction models for landslide hazards: review, comparison and evaluation.  
Retrieved from http://hal-sde.archives-ouvertes.fr/hal-00299312/ 

Bright, E. A., Coleman, P. R., Rose, A. N., & Urban, M. L. (2014). LandScan. Oak Ridge: Oak Ridge National  
Laboratory. 

Broxton, P. D., Zeng, X., Scheftic, W., & Troch, P. A. (2014). A MODIS-based global 1-km maximum  
green vegetation fraction dataset. Journal of Applied Meteorology and Climatology, 53(8), 1996-2004. 

Budimir, M. E. A., Atkinson, P. M., & Lewis, H. G. (2015). A systematic review of landslide probability 
mapping using logistic regression. Landslides, 12(3), 419–436. https://doi.org/10.1007/s10346-014-
0550-5 

Daniell, J. E., Schaefer, A. M., & Wenzel, F. (2017). Losses Associated with Secondary Effects in 
Earthquakes. Frontiers in Built Environment, 3. https://doi.org/10.3389/fbuil.2017.00030 

Federal Emergency Management Agency (2019). Hazus-MH (4.2). https://www.fema.gov/hazus-software 
Felicísimo, Á. M., Cuartero, A., Remondo, J., & Quirós, E. (2012). Mapping landslide susceptibility with 

logistic regression, multiple adaptive regression splines, classification and regression trees, and 
maximum entropy methods: a comparative study. Landslides. https://doi.org/10.1007/s10346-012-
0320-1 

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land  
areas. International journal of climatology, 37(12), 4302-4315. 

Gallen, S. F., Clark, M. K., Godt, J. W., Roback, K., & Niemi, N. A. (2017). Application and evaluation of a 
rapid response earthquake-triggered landslide model to the 25 April 2015 M w 7.8 Gorkha 
earthquake, Nepal. Tectonophysics, 714–715, 173–187. https://doi.org/10.1016/j.tecto.2016.10.031 

Garcia, D., Mah, R. T., Johnson, K. L., Hearne, M. G., Marano, K. D., Lin, K. W., et al. (2012). ShakeMap  
Atlas 2.0: An Improved Suite of Recent Historical Earthquake ShakeMaps for Global Hazard 
Analyses and Loss Model Calibration. Presented at the World Conference on Earthquake 
Engineering, Lisbon, Portugal. 



 
	

21	

García-Rodríguez, M. J., Malpica, J. A., Benito, B., & Díaz, M. (2008). Susceptibility assessment of  
earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 95(3), 172–191. 

Godt, J., Sener, B., Verdin, K., Wald, D., Earle, P., Harp, E., & Jibson, R. (2008). Rapid assessment of 
earthquake-induced landsliding. In Proceedings of the First World Landslide Forum, United Nations 
University, Tokyo, Japan. Retrieved from 
http://137.227.233.24/earthquakes/pager/prodandref/Godt_et_al_(2009)_PAGER_Landslides.pdf 

Hamburger, M.W., C. Geverd, D. Wald, K. Marano, K. Johnson, D. Garcia, and K. Jaiswal, 2011, Use of  
Scenario Earthquakes for Understanding Seismic Hazards in the APEC Region, in School Earthquake 
and Tsunami Safety in APEC Economies: Reducing Risk and Improving Preparedness, T. Tobin & K. Yawitz, 
eds., pp. 114-173.  

Hartmann, J., & Moosdorf, N. (2012). The new global lithological map database GLiM: A representation of 
rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13(12), n/a-n/a. 
https://doi.org/10.1029/2012GC004370 

Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotić, A., ... &  
Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine 
learning. PLoS one, 12(2), e0169748. 

Hernández, G., Vahrson, W. y Ruiz, A. (1992). Deslizamientos producto del terremoto (4-22-91)/Landslides  
produced by the 22 Apr 1991 earthquake. Mapa publicado. Escuela de Ciencias Geográficas. U

 niversidad Nacional de Costa Rica. 
Indiana Department of Homeland Security. (2019). 2019 State of Indiana Standard Multi-Hazard Mitigation  

Plan. Retrieved from https://www.in.gov/dhs/files/Indiana-State-Mitigation-Plan-2019-
Optimized.pdf 

Jibson, R. W., Harp, E. L., & Michael, J. A. (2000). A method for producing digital probabilistic seismic 
landslide hazard maps. Engineering Geology, 58(3), 271–289. 

Jibson, R. W. (2007). Regression models for estimating coseismic landslide displacement. Engineering Geology,  
91(2–4), 209–218. 

Johnston, A. C., & Schweig, E. S. (1996). The enigma of the New Madrid earthquakes of 1811-1812. Annual 
Review of Earth and Planetary Sciences, 24(1), 339-384. 

Keefer, D. K. (2002). Investigating landslides caused by earthquakes–a historical review. Surveys in Geophysics, 
23(6), 473–510. 

Kritikos, T., Robinson, T. R., & Davies, T. R. H. (2015). Regional coseismic landslide hazard assessment 
without historical landslide inventories: A new approach: Coseismic landslide hazard assessment. 
Journal of Geophysical Research: Earth Surface, 120(4), 711–729. https://doi.org/10.1002/2014JF003224 

Li, W. L., Huang, R. Q., & Xu, Q. (2012). GIS-based logistic regression for landslide susceptibility mapping 
of the 2008 Wenchuan earthquake region, China. Landslides and Engineered Slopes: Protecting Society 
through Improved Understanding. 

Liao, H. W., & Lee, C. T. (2000, December). Landslides triggered by the Chi-Chi earthquake. In Proceedings of  
the 21st Asian conference on remote sensing, Taipei (Vol. 1, No. 2, pp. 383-388). 

Marano, K. D., Wald, D. J., & Allen, T. I. (2009). Global earthquake casualties due to secondary effects: a 
quantitative analysis for improving rapid loss analyses. Natural Hazards, 52(2), 319–328. 
https://doi.org/10.1007/s11069-009-9372-5 

Marc, O., Hovius, N., Meunier, P., Gorum, T., & Uchida, T. (2016). A seismologically consistent expression 
for the total area and volume of earthquake-triggered landsliding: MODELING EARTHQUAKE-
TRIGGERED LANDSLIDES. Journal of Geophysical Research: Earth Surface, 121(4), 640–663. 
https://doi.org/10.1002/2015JF003732 

Marzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 
19(6), 1106–1114. 

Meunier, P., Hovius, N., & Haines, A. J. (2007). Regional patterns of earthquake-triggered landslides and their 
relation to ground motion. Geophysical Research Letters, 34(20), 1–L20408. 

Moore, I. D., R. B. Grayson, and A. R. Ladson (1991), Digital terrain modelling: a review of hydrological,  
geomorphological, and biological applications, Hydrol. Process., 5(1), 3–30.  



 
	

22	

Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., & Jaedicke, C. (2006). Global landslide and avalanche 
hotspots. Landslides, 3(2), 159–173. https://doi.org/10.1007/s10346-006-0036-1 

Nowicki, M. A., Wald, D. J., Hamburger, M. W., Hearne, M., & Thompson, E. M. (2014). Development of a 
globally applicable model for near real-time prediction of seismically induced landslides. Engineering 
Geology, 173, 54–65. https://doi.org/10.1016/j.enggeo.2014.02.002 

Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S., Tanyas, H., et al. (2018). A  
Global Statistical Model for Near Real-Time Assessment of Seismically Induced Landslides. Journal of 
Geophysical Research: Earth Surface.  

Nowicki Jessee, M.A., Hamburger, M. W., Ferrara, M. R., McLean, A., & FitzGerald, C. (2020a). A global  
dataset and model of earthquake-induced landslide fatalities. Landslides, 1-14. 
https://doi.org/10.1007/s10346-020-01356-z 

Nowicki Jessee, M. A., Seal, D., Hamburger, M. W., Sherrill, E. M., Wald, D. J., & Allstadt, K. (2020b,  
December). A high-resolution globally applicable model for near-real-time estimation of earthquake-

induced landslides. In AGU Fall Meeting 2020. AGU. 
Obermeier, S. F., Munson, P. J., Munson, C. A., Martin, J. R., Frankel, A. D., Youd, T. L., & Pond, E. C. 

(1992). Liquefaction evidence for strong Holocene earthquake(s) in the Wabash Valley of Indiana-
Illinois. Seismological Research Letters, 63(3), 321-335. 

Parker, R. N., Rosser, N. J., & Hales, T. C. (2017). Spatial prediction of earthquake-induced landslide 
probability. Natural Hazards and Earth System Sciences Discussions, 1–29. https://doi.org/10.5194/nhess-
2017-193 

Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G., ... & Gochis, D. (2016). Global  
1-km gridded thickness of soil, regolith, and sedimentary deposit layers. ORNL DAAC. 

Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and 
reporting. The Journal of Educational Research, 96(1), 3–14. 

Rennie, J. (2003). Logistic regression. online] Apr, 23. 
Robinson, T. R., Rosser, N. J., Davies, T. R. H., Wilson, T. M., & Orchiston, C. (2018). Near-Real-Time 

Modeling of Landslide Impacts to Inform Rapid Response: An Example from the 2016 Kaikoura, 
New Zealand, Earthquake. Bulletin of the Seismological Society of America. 
https://doi.org/10.1785/0120170234 

Rodriguez, C. E., Bommer, J. J., & Chandler, R. J. (1999). Earthquake-induced landslides: 1980-1997. Soil 
Dynamics and Earthquake Engineering, 18, 325–346. 

Ruiz, P., Carr, M. J., Alvarado, G. E., Soto, G. J., Mana, S., Feigenson, M. D., & Sáenz, L. F. (2019).  
Coseismic landslide susceptibility analysis using LiDAR data PGA attenuation and GIS: The case of 
Poás volcano, Costa Rica, Central America. In Poás Volcano (pp. 79-118). Springer, Cham. 

Schmitt, R.G., Tanyas, Hakan, Nowicki Jessee, M.A., Zhu, J., Biegel, K.M., Allstadt, K.E., Jibson, R.W., 
Thompson, E.M., van Westen, C.J., Sato, H.P., Wald, D.J., Godt, J.W., Gorum, Tolga, Xu, Chong, 
Rathje, E.M., Knudsen, K.L., 2017, An Open Repository ofEarthquake-triggered Ground Failure Inventories, 
U.S. Geological Survey data release collection.  

Schwartz, S. Y., & Christensen, D. H. (1988). The 12 July 1986 St. Marys, Ohio earthquake and recent 
seismicity in the Anna, Ohio seismogenic zone. Seismological Research Letters, 59(2), 57-62.  

Sherrill, E.M & Hamburger, M.W. (2021).  Use of Scenario Earthquakes for Seismic Hazard Assessment in 
the Central United States (abstract).  Seismological Society of America, Annual Meeting. 

Street, R., Couch, D., & Konkler, J. (1986). The Charleston, Missouri Earthquake of October 31. Earthquake 
Notes, 57(2), 41-51.  

Tanyas, H., van Westen, C. J., Allstadt, K. E., Nowicki Jessee, M. A., Gorum, T., Jibson, R. W., et al. (2017). 
Presentation and Analysis of a World-Wide Database of Earthquake-Induced Landslide Inventories. 
Journal of Geophysical Research: Earth Surface. 

Tuttle, M. P., Schweig, E. S., Sims, J. D., Lafferty, R. H., Wolf, L. W., & Haynes, M. L. (2002). The 
earthquake potential of the New Madrid seismic zone. Bulletin of the Seismological Society of America, 
92(6), 2080-2089. 

United Nations Development Programme (2016) Human development report 2016: human development for  
everyone. http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf. Accessed 1 Sept 2017 



 
	

23	

United States Geological Survey [USGS] (2017). ShakeMap – Earthquake Ground Motion and Shaking 
Intensity Maps: U.S. Geological Survey.  https://doi.org/10.5066/F7W957B2. 

Verdin, K. L. (2017). Hydrologic Derivatives for Modeling and Analysis - A New Global High-Resolution Database (Data  
Series No. 1053). U.S. Geological Survey.  

Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic bulletin &  
review, 11(1), 192-196. 

Worden, C. B., & Wald, D. J. (2016). ShakeMap Manual Online: technical manual, user’s guide, and software 
guide. U.S. Geological Survey. https://doi.org/10.5066/F7D21VPQ 

Zhu, J., Baise, L. G., & Thompson, E. M. (2017). An updated geospatial liquefaction model for global 
application. Bulletin of the Seismological Society of America, 107(3), 1365-1385. 

 
 

Bibliography of Work Supported by this project 

Nowicki Jessee, M. A., Seal, D., Hamburger, M. W., Sherrill, E. M., Wald, D. J., & Allstadt, K. (2020, 
December). A high-resolution globally applicable model for near-real-time estimation of 
earthquake-induced landslides. In AGU Fall Meeting 2020. AGU. 

Seal, D., Nowicki Jessee, M. A., Hamburger, M. W., & Ruiz, P. (2020, December). Application of 
Scenario Earthquakes for Assessment of Coseismic Landslide Hazard: A Case Study in Costa 
Rica. In AGU Fall Meeting 2020. AGU. 

Ruiz, P., Rodriguez, N., Valverde, J., Marden, A., Vecchiarelli, L., Seal, D., Nowicki Jessee, M.A. and 
Hamburger, M.W. (2020, December). A comprehensive catalog of coseismic landslides in Costa 
Rica: Toward the development of an empirical landslide hazard model. In AGU Fall Meeting 
2020. AGU. 

Seal, D.M., Jessee, A.N., Hamburger, M.W., and Allstadt, K.E., 2020, Comprehensive Global 
Database of Earthquake-Induced Landslide Events and Their Impacts: U.S. Geological Survey 
data release, https://doi.org/10.5066/P9NWIRZZ. 

Nowicki Jessee, M.A., E.M. Sherill, M.W. Hamburger, K.E. Allstadt, E.M. Thompson, M.G. Hearne, 
and D.J. Wald, 2019. Improving estimates of the likelihood of seismically induced landslides in 
near real-time (abstract). American Geophysical Union Annual Meeting, San Francisco, California. 

Nowicki Jessee, M.A., M.W. Hamburger, 2019. Estimating the Likelihood and Impact of Seismically 
Induced Landslides in Near Real-time (abstract). Seismological Society of America Annual Meeting, 
Seattle, Washington. 

Nowicki Jessee, M.A., M.W. Hamburger, M.R. Ferrara, A. McLean, C. FitzGerald, 2020, A Global 
Dataset and Model of Earthquake-induced Landslide Fatalities, Landslides. 

Sherrill, E.M & Hamburger, M.W. (2021).  Use of Scenario Earthquakes for Seismic Hazard 
Assessment in the Central United States (abstract).  Seismological Society of America, Annual Meeting. 

*Nowicki Jessee, M.A., M.W. Hamburger, K. Allstadt, D.J. Wald, S. Robeson, H. Tanyas, M. Hearne, 
and E.M. Thompson, 2018, A Global Empirical Model for Near Real-Time Assessment of 
Seismically-induced Landslides, Journal of Geophysical Research: Earth Surface, 123, 1835-1859. 

*Nowicki Jessee, M.A., M.W. Hamburger, K.E. Allstadt, E.M. Thompson, D.J. Wald, M.R. Ferrara, 
A. McLean, C. FitzGerald (May 2018). Estimating Fatalities Associated with Seismically Induced 
Landslides. Seismological Society of America Annual Meeting, Miami, Florida.  

 



 
	

24	

*Nowicki Jessee, M.A., M.W. Hamburger, S. Robeson, M. Ferarra and C. FitzGerald, 2017, Can We 
Predict the Impact of Seismically Induced Landslides? presented at 2017 Seismological Society 
of America Annual Meeting, Denver, Colorado, 18-20 April. 

 *Allstadt, K.E., E.M. Thompson, D.J. Wald, M.W. Hamburger, J.W. Godt, K.L. Knudsen, R.W. 
Jibson, M.A. Jessee, J. Zhu, M. Hearne, L.G. Baise, H.Tanyas, and K.D. Marano, 2016, USGS 
Approach to Real-Time Estimation of Earthquake-Triggered Ground Failure—Results of 2015 
Workshop, USGS Open-File Report 2016–1044. 

*Jessee, M.A. (April 2016). Global Model for Predicting Seismically Induced Landslides in  Near Real-time, 
Crossroads Geology Conference, Indiana University,  

*Jessee, M.A., M.W. Hamburger, D.J. Wald, M. Hearne, S. Robeson, E.M. Thompson, H. Tanyas, 
K. Allstadt (April 2016). Use of an expanded global earthquake data set to develop a near real-time model for 
predicting seismically induced landslides. Seismological Society of America Annual Meeting, Reno, 
Nevada.  

 *Jessee, M. Anna (October 2015). Toward a Global Model for Predicting Earthquake-Induced 
Landslides in Near-Real Time, USGS Geologic Hazards Science Center Secondary Hazards 
Workshop, Invited Talk. 

*Nowicki, M.A., M.W. Hamburger, D.J. Wald, S. Robeson, M. Hearne (April 2015). Global Model for 
Predicting Seismically Induced Landslides in Near Real-time. Seismological Society of America Annual 
Meeting, Pasadena, California.  

*Nowicki, M. Anna (July 17, 2014). Toward a Global Model for Predicting Earthquake-Induced Landslides in 
Near-Real Time, USGS Geologic Hazards Science Center Seminar Series, Invited Talk 

*Nowicki, M. Anna, D.J. Wald, M.W. Hamburger, M.G. Hearne, E.M. Thomspson (February 2014). 
Development of a Globally Applicable Model for Near Real-time Prediction of Seismically Induced Landslides, 
Engineering Geology.  

*Nowicki; M.A., D.J. Wald; M.W. Hamburger; M. Hearne; E. Thompson, 2013, Toward a Global 
Model for Predicting Earthquake-Induced Landslides in Near-Real Time, Abstract NH32A-02, 
presented at 2013 Fall Meeting, AGU, San Francisco, Calif., 9-13 Dec. 

*Nowicki, M. Anna (June 2013). Development of a Globally Applicable Model for Near Real-time Prediction of 
Seismically Induced Landslides (Master’s thesis). Indiana University, Bloomington, IN.   

*Nowicki, M.A. ; M. Hearne; E. Thompson; D.J. Wald, M.W. Hamburger, 2012, Logistic Regression 
for Seismically Induced Landslide Predictions: Using Uniform Hazard and Geophysical Layers 
as Predictor Variables [abstract], EOS, Trans. AGU, Fall Meeting, Supp., Abstract NH13A-1586. 

 

*Based on work that was started before the funding period for this grant began. 

 


